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Warning!

• Implementation details

• Subject to change



The Problems

• Single channel implementation

• For use from both dedicated threads and 
go threads

simultaneously, on same channel

• alt and atomicity

• multi-read/write

• concurrency
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Invariants

• Never pending puts and takes

• Never takes and anything in buffer

• Never puts and room in buffer

• take! and put! use channel mutex

• no global mutex
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close!

• all pending takes complete with nil (closed)

• subsequent puts complete with nil (already 
closed)

• subsequent takes consume ordinarily until 
empty

any pending puts complete with true

takes then complete with nil



Queue Limits

• puts and takes queues are not unbounded

• 1024 pending ops limit

• will throw if exceeded

• not for buffering, use buffers/windowing



alt(s!!)

• attempts more than one op

• on more than one channel

• without global mutex

nor multi-channel locks

• exactly one op can succeed



alt implications
• registration of handlers is not atomic

• completion might occur before 
registrations are finished

or any time thereafter

• completion of one alternative must ‘disable’ 
the others

atomically

• cleanup



Handlers

• Wrapper around a callback

• SPI

• active?

• commit -> callback-fn

• lock-id -> unique-id

• java.util.concurrent.locks.Lock: lock, unlock



take/put handlers

• simple wrapper on callback

• lock is no-op

• lock-id is 0

• active? always true

• commit -> the callback



alt handlers

• each op handler wraps its own callback, but 
delegates rest to shared ‘flag’ handler

• flag handler has lock

a boolean active? flag that starts true and 
makes one-time atomic transition

• commit transitions shared flag and returns 
callback

must be called under lock
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alt concurrency

• no global or multi-channel locking

• but channel does multi-handler locking

some ops commit both a put and take

• lock-ids used to ensure consistent lock 
acquisition order



alt cleanup
• ‘disabled’ handlers will still be in queues

• channel ops purge
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SPI revisited

• handler callback only invoked on async 
completion

• only 2 scenarios

• when not ‘parked’, op happens immediately

• callback is not used

• non-nil return value is op return
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Wiring !/!!

• blocking ops (!!)

create promise

callback delivers

only deref promise on nil return from op

• parking go ops (!)

IOC state machine code is callback



Summary

• You don’t need to know any of this

• But understanding the ‘machine’ can help 
you make good decisions


