
Inside core.async 
Channels

Rich Hickey



Warning!

• Implementation details

• Subject to change



The Problems

• Single channel implementation

• For use from both dedicated threads and 
go threads

simultaneously, on same channel

• alt and atomicity

• multi-read/write

• concurrency



API

Channel

>!!

put!

<!!

take!

>!

alt!

<!

alt!



SPI

Channel

>!!

put!

<!!

take!

>!

alt!

<!

alt!

impl/put! 
[val handler]

impl/take! 
[handler]



Anatomy

Channel
takes (fifo)

buffer(data)
dataputs (fifo)

closed?

user-specified data buffer

internal linked 
queues of handlers



Invariants

• Never pending puts and takes

• Never takes and anything in buffer

• Never puts and room in buffer

• take! and put! use channel mutex

• no global mutex



put!
Channel

takes (fifo)
buffer(data)

dataputs (fifo)

closed?

impl/put! 
[val handler]

Channel
takes (fifo)

buffer(data)
dataputs (fifo)

closed?

Channel
takes (fifo)

buffer(data)
dataputs (fifo)

closed?

completes
handler



put! - windowed buffers
Channel

X

takes (fifo)
sliding buffer(data)

dataputs (fifo)

closed?

Channel
takes (fifo)

dropping buffer(data)
dataputs (fifo)

closed?

impl/put! 
[val handler]

dropped

dropped



take!
Channel

takes (fifo)
buffer(data)

dataputs (fifo)

closed?

Channel
takes (fifo)

buffer(data)
dataputs (fifo)

closed?

Channel
takes (fifo)

buffer(data)
dataputs (fifo)

closed?

impl/take! 
[handler]

completes
handler



close!

• all pending takes complete with nil (closed)

• subsequent puts complete with nil (already 
closed)

• subsequent takes consume ordinarily until 
empty

any pending puts complete with true

takes then complete with nil



Queue Limits

• puts and takes queues are not unbounded

• 1024 pending ops limit

• will throw if exceeded

• not for buffering, use buffers/windowing



alt(s!!)

• attempts more than one op

• on more than one channel

• without global mutex

nor multi-channel locks

• exactly one op can succeed



alt implications
• registration of handlers is not atomic

• completion might occur before 
registrations are finished

or any time thereafter

• completion of one alternative must ‘disable’ 
the others

atomically

• cleanup



Handlers

• Wrapper around a callback

• SPI

• active?

• commit -> callback-fn

• lock-id -> unique-id

• java.util.concurrent.locks.Lock: lock, unlock



take/put handlers

• simple wrapper on callback

• lock is no-op

• lock-id is 0

• active? always true

• commit -> the callback



alt handlers

• each op handler wraps its own callback, but 
delegates rest to shared ‘flag’ handler

• flag handler has lock

a boolean active? flag that starts true and 
makes one-time atomic transition

• commit transitions shared flag and returns 
callback

must be called under lock



alt handlers
alt handler

callback

shared flag

shared flag

flag

lock-id

mutex

alt handler

callback

shared flag

alt handler

callback

shared flag



alt concurrency

• no global or multi-channel locking

• but channel does multi-handler locking

some ops commit both a put and take

• lock-ids used to ensure consistent lock 
acquisition order



alt cleanup
• ‘disabled’ handlers will still be in queues

• channel ops purge

Channel
takes (fifo)

buffer(data)
dataputs (fifo)

closed?

Channel
takes (fifo)

buffer(data)
dataputs (fifo)

closed?



SPI revisited

• handler callback only invoked on async 
completion

• only 2 scenarios

• when not ‘parked’, op happens immediately

• callback is not used

• non-nil return value is op return



put!
Channel

takes (fifo)
buffer(data)

dataputs (fifo)

closed?

impl/put! 
[val handler]

Channel
takes (fifo)

buffer(data)
dataputs (fifo)

closed?

Channel
takes (fifo)

buffer(data)
dataputs (fifo)

closed?

completes
handler



take!
Channel

takes (fifo)
buffer(data)

dataputs (fifo)

closed?

Channel
takes (fifo)

buffer(data)
dataputs (fifo)

closed?

Channel
takes (fifo)

buffer(data)
dataputs (fifo)

closed?

impl/take! 
[handler]

completes
handler



Wiring !/!!

• blocking ops (!!)

create promise

callback delivers

only deref promise on nil return from op

• parking go ops (!)

IOC state machine code is callback



Summary

• You don’t need to know any of this

• But understanding the ‘machine’ can help 
you make good decisions


